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Our basic language

Lf Λ

Λ is a set of indexes
Lf Λ is the classical first order language with binary
predicates indexed by Λ and equality;

Restricted quantifiers

(∀xi .λ xj)A ≡ ∀xi(xjRλxi → A)

(∃xi .λ xj)A ≡ ∃xi(xjRλxi ∧ A)

Relational compositions
if α = λ1 . . . λn then Rα = Rλ1 ◦ . . . ◦ Rλn ;

if α is empty then Rα = equality .
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Propositional constants
> ≡ u = u;
⊥ ≡ u 6= u.

RfΛ
⊥,>, xRαy , (x = y);
∧,∨;
(∀x .λ y), (∃x .λ y).
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Inherently universal variables

Clean formulas
A formula A is clean⇐⇒ there is no 2 different quantifiers
binding the same variable.

Inherently universal variables
A variable x in a clean formula A, is inherently universal if either
x is free, or
x is bound by a universal quantifier which is not in the scope of
any existential quantifier.
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Kracht formulas

Kracht formulas
A(x0) is called a Kracht formula if

A(x0) ∈ RfΛ;
A(x0) has a single free variable x0;
in every subformula of A(x0) of the form xRαy at least one
of x and y is inherently universal.

Kracht’s Theorem
A(x0) is a Kracht formula⇐⇒ A(x0) locally corresponds to a
Sahlqvist formula (in a modal language with a few unary
modalities).
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Examples of Kracht formulas

First-order equivalents of basic modal axioms

transitivity

(∀y . x)(∀z . y)xRz

R1 R1

R2

R2

x

y

z

x

y u

v

(left) commutativity

(∀y .1 x)(∀u .2 y)(∃v .2 x)vR1u
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Examples of Kracht formulas

However, Kracht formulas may contain an arbitrary long
quantifier alternation.

(∀x1.x0)(∃x2.x1)(∀x3.x2) . . . (∃xn−1.xn−2)(∀xn.xn−1)(x1Rαxn)
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Some observations on Kracht formulas

Kracht formulas (another version)

in every subformula of A(x0) of the form xRαy x is
inherently universal.

If y is inherently universal while x is not, then
xRλ1...λny ≡ (∃v1 .λ1 x)(∃v2 .λ2 v1) . . . (∃vn .λn vn−1)(y = vn).
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Some observations on Kracht formulas (II)

Kracht formulas seem do not have a prenex form

((∀y . r)(∀z . r)(yRz)) ∧ ((∃v . r)>)

6≡
(∀y . r)(∀z . r)(yRz ∧ (∃v . r)>);

(∃v . r)(> ∧ (∀y . r)(∀z . r)(yRz))

is not a Kracht formula
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Algorithmic problem

Given a first order formula determine if it is equivalent to a
Kracht formula.

Undecidable (Chagrov, Zakharyashev, 1992; Chagrov,
Chagrova, 2005).

Its partial cases
Learn how to prove that this or that that fixed first-order formula
is not equivalent to a Kracht formula.

Generalizations of Sahlqvist theorem
V. Goranko, D. Vakarelov, 2000 — 2006;
E. Zolin, 2005.
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Well known argument

The formula (♦♦p → p) ∧ (�♦p → ♦�p) is not equivalent to a
Sahlqvist formula since it is not locally definable while Sahlqvist
formulas are.
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Approach of V. Goranko and D. Vakarelov

Problem:
Generalized Sahlqvist formula

D2 = p ∧�(♦p → �q)→ ♦��q

locally corresponds to

∃y
(

xRy ∧ ∀z
(

yR2z → z ∈ R(R(x) ∩ R−1(x))
))

.

Prove that the first formula not equivalent to any Sahlqvist
formula, or that the second formula is not equivalent to any
Kracht formula.
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Approach of V. Goranko and D. Vakarelov

Solution: a-persistence

A general frame (W , (Rλ : λ ∈ Λ),A) is called ample if for
any w ∈W for any α ∈ Λ∗ Rα(w) ∈ A.
A modal formula φ is a-persistent if for any ample general
frame F = (W , (Rλ : λ ∈ Λ),A) if F |= φ then
(W , (Rλ : λ ∈ Λ)) |= φ.
Every Sahlqvist formula is a-persistent.
The formula D2 is not a-persistent.
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Classical characterization theorems

Theorem
A class of frames is elementary iff it is closed under ultrapowers
and elementary equivalence.

Theorem
A first-order formula is equivalent to a positive formula if it is
preserved under model homomorphisms.

Theorem
A first-order formula is equivalent to an existential formula iff it
is preserved under model extensions.
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Theorem (van Benthem)
A first order formula (in a language with binary and unary
predicates) is equivalent to a standard translation of a modal
formula iff it is preserved under bisimulation.
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Syntactic class of first-order formulas
⇓

Truth-preserving relation between models
⇓

Semantic characterization
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Consider two models
M = (W M , (RM

λ : λ ∈ Λ)) and N = (W N , (RN
λ : λ ∈ Λ)).

Definition
φ distinguishes M from N if M |= φ and N 6|= φ.

When M is distinguishable from N

by any first-order formula? by a Kracht formula?

classical Eurenfeucht-Fraïssé game ?
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Classical Eurenfeucht-Fraïssé game

two players (∀ and ∃) play over a pair of models M and N;
the number of rounds is annonced by ∀ in the beginning of
the game;
a position is a pair of k -tuples ā = (a1, . . . ,ak ),ai ∈W M

and b̄ = (b1, . . . ,bk ),bi ∈W N .
a position is favorable to ∃ if for any λ ∈ Λ,1 ≤ i , j ≤ k

aiRM
λ aj ⇐⇒ biRN

λ bj

.
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Modification of Eurenfeucht-Fraïssé game

Kracht formulas have a single free variable =⇒
two players (∀ and ∃) play over a pair of models with
extinguished points M◦ = (M, xM

0 ), xM
0 ∈W M and

N◦ = (N, xN
0 ),xN

0 ∈W N ;
in Kracht formulas all quantifiers are restricted =⇒
a position is a triple (T ,m,n) where
T = (W T , (RT

λ : λ ∈ Λ)) is a tree with a root x0,
W T = {x0, . . . , xk} and m : T → M and n : T → N are
monotone mappings (i.e. xiRT

λ xj implies m(xi)RM
λ m(xj)),

sending x0 respectively to xM
0 and xN

0 ;
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a position is favorable to ∃ if for any α ∈ Λ∗,1 ≤ i , j ≤ k

m(xi)(RM)αm(xj) =⇒ n(xi)(RN)αn(xj),

if xi was played before first model alternation.
the game may be either finite or infinite.
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Initial position: T has a single point x0, m and n send it to
xM

0 and xN
0 .

Round 0. ∀ constructs T0 = ({x0, . . . , xl}, (Rλ : λ ∈ Λ)) and
a monotone n0 : T0 → N. Then ∃ must answer with a
monotone m0 : T0 → M.
Round i . ∀ adds to Ti−1 a new leaf, and obtains Ti . Then
he chooses either M or N and extends respectively mi−1 or
ni−1 to Ti , obtaining mi or ni . After this, ∃ must extend the
rest mapping, and a new position (Ti ,mi ,ni) is obtained.
The game is won by ∃ if for any position (Ti ,mi ,ni)
α ∈ Λ∗,0 ≤ i ≤ l ,0 ≤ j ≤ k

m(xi)(RM)αm(xj) =⇒ n(xi)(RN)αn(xj).
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Initial position

M N

xM
0 xN

0

x0

nm
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Round 0

M N

xM
0 xN

0

x0

T

nm
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Round 1 (∀)

M N

xM
0 xN

0

x0

T

nm
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Round 1 (∃)

M N

xM
0 xN

0

x0

T

nm
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Round 2 (∀)

M N

xM
0 xN

0

x0

T

nm
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Round 2 (∃)

M N

xM
0 xN

0

x0

T

nm
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Kracht-reducibility in terms of games

Theorem
∀ has a winning strategy in a finite version of such a game iff
M◦ is distinguishable from N◦ by a Kracht formula

Definition
If ∃ has a winning strategy in an infinite game, we say that M◦ is
Kracht-reducible to N◦, in symbols:

M◦≫ N◦.

Remark
Winning strategy in an infinite game is a kind of (bi)simulation.
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Kracht-reducibility in terms of simulations

Consider two Lf Λ-structures M = (W M , (RM
λ : λ ∈ Λ)) and

N = (W N , (RN
λ : λ ∈ Λ)), a tree T = (W T , (RT

λ : λ ∈ Λ)),
monotonic mappings m : T → M and n : T → N.

Definition

A relation Z ⊆W M ×W N is called a Kracht-simulation if Z
satisfies the following conditions:

(KB1) For every t ∈W T , (m(t),n(t)) ∈ Z ;

(KB2) For any xM ∈W M , xN ∈W N , t ∈ T , for arbitrary
sequence α ∈ Λ∗ if (xM , xN) ∈ Z and m(t)(RM)αxM , then
n(t)(RN)αxN .
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Kracht-reducibility in terms of simulations

(KB3) For any points xM ∈W M and xN ∈W N such that
(xM , xN) ∈ Z if there exists a point (x ′)M ∈ RM

λ (xM), then there
exists a point (x ′)N ∈ RN

λ (xN) such that (x ′M , x ′N) ∈ Z .

(KB4) For any points xM ∈W M and xN ∈W N such that
(xM , xN) ∈ Z , if there exists a point (x ′)N ∈ RN

λ (xN), then there
exists a point (x ′)M ∈ RM

λ (xM), such that (x ′M , x ′N) ∈ Z .

In this case we say that the triple (M,T ,m) is Kracht-reducible
to (N,T ,n) by Z , in symbols: (M,T ,m)�Z (N,T ,n).
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Kracht-reducibility in terms of simulations

Z

Z

Z

1 2 1 2

M N
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m n
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n

M N

T

Figure: Some examples of Kracht-simulations.
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Kracht-reducibility in terms of simulations
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Figure: The left picture is not a Kracht-simulation while the right
picture is.
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Kracht-reducibility in terms of simulations

Definition

M◦ is Kracht-reducible to N◦ (notation: M◦≫ N◦) if for any tree
T = (W T , (RT

λ : λ ∈ Λ), x0) for all monotonic mappings
n : T → N, sending x0 to xN

0 , there exists a monotonic mapping
m : T → M, sending x0 to xM

0 , and a relation Z ⊆W M ×W N

such that (M,T ,m)�Z (N,T ,n).

Definition
A(x0) ∈ Lf Λ is preserved under Kracht-reducibility if
(M, xM

0 )≫ (N, xN
0 ) and M |= A(xM

0 ) implies N |= A(xN
0 ).

Theorem
A(x0) ∈ Lf Λ is equivalent to a Kracht formula iff it is preserved
under Kracht-reducibility.
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A trivial example

The formula RS(x) = (∃y . x)yRy .

. . .

(ω + 1 + ω,<)

. . .

. . .

. . .

∞

∞

xM
0 xN

0
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A trivial example

The formula RS(x) = (∃y . x)yRy .

. . .

(ω + 1 + ω,<)

. . .

. . .

. . .

∞

∞

xM
0 xN

0
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“Cubic” formula

All 3-modal frames of the form F1 × F2 × F3, satisfy

fc(x0) = ∀x1∀x1∀x3(x0R1x1 ∧ x0R2x2 ∧ x0R3x3 →
∃y12∃y13∃y23∃y123(x1R2y12 ∧ x1R3y13 ∧ x2R1y12 ∧ x2R3y23 ∧

x3R1y13 ∧ x3R2y23 ∧ y23R1y123 ∧ y13R2y123 ∧ y12R3y123))

R1

R2

R3 R3

R2
R1

R1
R2

R3
R2

R3
R1

x0

x1

x2

x3

y
13

y
12

y
23

y
123

1
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This property is locally first-order definable by a generalized
Sahlqvist formula

cub1 = [♦1(�2p12 ∧�3p13) ∧ ♦2(�1p21 ∧�3p23) ∧ ♦3(�1p31 ∧�2p32)∧
�1�2(p12 ∧ p21→�3q3)∧�1�3(p13 ∧ p31→�2q2)∧�2�3(p23 ∧ p32→�1q1) ]

→ ♦1♦2♦3(q1 ∧ q2 ∧ q3).
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This property is not equivalent to any Kracht formula.

b̄11 b̄21 b̄31 b̄12 b̄22 b̄32 b̄13 b̄23 b̄33

c̄1 c̄2 c̄3

r

c̄123

a1 a2
a3

b11 b21 b31 b12 b22 b32
b13 b23 b33

c1 c2 c3

M

N

a1 a2 a3

b11 b21 b31 b12 b22 b32
b13 b23 b33

c1 c2 c3

r
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This characterization can be easily extended to generalized
Kracht formulas.

(KB2’) For any xM ∈W M , xN ∈W N , t1, . . . , tl ∈ T , for all safe
expressions S(t1, . . . , tl) if (xM , xN) ∈ Z and
xM ∈ S(m(t1), . . . ,m(tl)), then xN ∈ xM ∈ S(m(t1), . . . ,m(tl)).
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Questions

Question
Does modal definability of a first-order formula, and
a-persinstance of its modal counterpart imply its equivalence to
a Kracht formula?

Question
Take a class of first-order formulas C. It defines some
truth-preserving relation between models: put M ≫ N if for all
φ ∈ C if M |= φ then N |= φ.
When we can claim that any first-order formula ψ is equivalent
to a formula from C iff ψ is preserved under≫ ?
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