Semantic characterization of Kracht formulas

Stanislav Kikot

26 August 2010

Stanislav Kikot Semantic characterization of Kracht formulas

▲ 프 → 프

Our basic language

$\mathcal{L}f_{\Lambda}$

A is a set of indexes

Lf^Λ is the classical first order language with binary
 predicates indexed by Λ and equality;

Restricted quantifiers

$$(\forall x_i \triangleright_{\lambda} x_j) A \equiv \forall x_i (x_j R_{\lambda} x_i \to A)$$
$$(\exists x_i \triangleright_{\lambda} x_j) A \equiv \exists x_i (x_j R_{\lambda} x_i \land A)$$

Relational compositions

- if $\alpha = \lambda_1 \dots \lambda_n$ then $\mathbf{R}^{\alpha} = \mathbf{R}_{\lambda_1} \circ \dots \circ \mathbf{R}_{\lambda_n}$;
- if α is empty then $R^{\alpha} = equality$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Propositional constants

•
$$\top \equiv u = u;$$

•
$$\perp \equiv u \neq u$$
.

$\mathcal{R}f_{\Lambda}$

•
$$\bot$$
, \top , $xR^{\alpha}y$, $(x = y)$;

•
$$\land, \lor;$$

•
$$(\forall x \triangleright_{\lambda} y), (\exists x \triangleright_{\lambda} y).$$

Stanislav Kikot Semantic characterization of Kracht formulas

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Clean formulas

A formula A is clean \iff there is no 2 different quantifiers binding the same variable.

Inherently universal variables

A variable x in a clean formula A, is inherently universal if either x is free, or x is bound by a universal quantifier which is not in the scope of any existential quantifier.

Kracht formulas

 $A(x_0)$ is called a Kracht formula if

- $A(x_0) \in \mathcal{R}f_{\Lambda};$
- $A(x_0)$ has a single free variable x_0 ;
- in every subformula of A(x₀) of the form xR^αy at least one of x and y is inherently universal.

Kracht's Theorem

 $A(x_0)$ is a Kracht formula $\iff A(x_0)$ locally corresponds to a Sahlqvist formula (in a modal language with a few unary modalities).

御 とくほとくほとう

ъ

However, Kracht formulas may contain an arbitrary long quantifier alternation.

$$(\forall x_1 \triangleright x_0)(\exists x_2 \triangleright x_1)(\forall x_3 \triangleright x_2) \dots (\exists x_{n-1} \triangleright x_{n-2})(\forall x_n \triangleright x_{n-1})(x_1 R^{\alpha} x_n)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Some observations on Kracht formulas

Kracht formulas (another version)

 in every subformula of A(x₀) of the form xR^αy x is inherently universal.

If *y* is inherently universal while *x* is not, then $xR^{\lambda_1...\lambda_n}y \equiv (\exists v_1 \triangleright_{\lambda_1} x)(\exists v_2 \triangleright_{\lambda_2} v_1)...(\exists v_n \triangleright_{\lambda_n} v_{n-1})(y = v_n).$

通 とう ほ とう ほ とう

Some observations on Kracht formulas (II)

Kracht formulas seem do not have a prenex form

$$((\forall y \triangleright r)(\forall z \triangleright r)(yRz)) \land ((\exists v \triangleright r)\top)$$

 $\neq (\forall y \triangleright r)(\forall z \triangleright r)(yRz \land (\exists v \triangleright r)\top);$

$$(\exists v \triangleright r)(\top \land (\forall y \triangleright r)(\forall z \triangleright r)(yRz))$$

is not a Kracht formula

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Algorithmic problem

Given a first order formula determine if it is equivalent to a Kracht formula.

Undecidable (Chagrov, Zakharyashev, 1992; Chagrov, Chagrova, 2005).

Its partial cases

Learn how to prove that this or that that fixed first-order formula is not equivalent to a Kracht formula.

Generalizations of Sahlqvist theorem

- V. Goranko, D. Vakarelov, 2000 2006;
- E. Zolin, 2005.

・ 同 ト ・ ヨ ト ・ ヨ ト

The formula $(\Diamond \Diamond p \to p) \land (\Box \Diamond p \to \Diamond \Box p)$ is not equivalent to a Sahlqvist formula since it is not locally definable while Sahlqvist formulas are.

Problem:

Generalized Sahlqvist formula

$$D_2 = p \land \Box (\Diamond p
ightarrow \Box q)
ightarrow \Diamond \Box \Box q$$

locally corresponds to

$$\exists y \left(x R y \land \forall z \left(y R^2 z \to z \in R(R(x) \cap R^{-1}(x)) \right) \right).$$

Prove that the first formula not equivalent to any Sahlqvist formula, or that the second formula is not equivalent to any Kracht formula.

・ 同 ト ・ ヨ ト ・ ヨ ト

Solution: a-persistence

- A general frame (W, (R_λ : λ ∈ Λ), A) is called *ample* if for any w ∈ W for any α ∈ Λ* R^α(w) ∈ A.
- A modal formula φ is *a*-persistent if for any ample general frame F = (W, (R_λ : λ ∈ Λ), A) if F ⊨ φ then (W, (R_λ : λ ∈ Λ)) ⊨ φ.
- Every Sahlqvist formula is a-persistent.
- The formula D_2 is not *a*-persistent.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

A class of frames is elementary iff it is closed under ultrapowers and elementary equivalence.

Theorem

A first-order formula is equivalent to a positive formula if it is preserved under model homomorphisms.

Theorem

A first-order formula is equivalent to an existential formula iff it is preserved under model extensions.

Theorem (van Benthem)

A first order formula (in a language with binary and unary predicates) is equivalent to a standard translation of a modal formula iff it is preserved under bisimulation.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Syntactic class of first-order formulas $\$ \Downarrow Truth-preserving relation between models $\$ \Downarrow Semantic characterization

Consider two models
$$M = (W^M, (R^M_\lambda : \lambda \in \Lambda))$$
 and $N = (W^N, (R^N_\lambda : \lambda \in \Lambda)).$

Definition

 ϕ distinguishes *M* from *N* if $M \models \phi$ and $N \not\models \phi$.

When M is distinguishable from N

by any first-order formula? by a Kracht formula?

classical Eurenfeucht-Fraïssé game

?

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Classical Eurenfeucht-Fraïssé game

٠

- two players (\forall and \exists) play over a pair of models *M* and *N*;
- the number of rounds is annonced by ∀ in the beginning of the game;
- a position is a pair of *k*-tuples $\bar{a} = (a_1, \ldots, a_k), a_i \in W^M$ and $\bar{b} = (b_1, \ldots, b_k), b_i \in W^N$.
- a position is favorable to \exists if for any $\lambda \in \Lambda$, $1 \le i, j \le k$

$$a_i R^M_\lambda a_j \iff b_i R^N_\lambda b_j$$

通 とく ヨ とく ヨ とう

Modification of Eurenfeucht-Fraïssé game

- Kracht formulas have a single free variable \implies two players (\forall and \exists) play over a pair of models with extinguished points $M_{\circ} = (M, x_0^M), x_0^M \in W^M$ and $N_{\circ} = (N, x_0^N), x_0^N \in W^N$;
- in Kracht formulas all quantifiers are restricted \implies a position is a triple (T, m, n) where $T = (W^T, (R^T_{\lambda} : \lambda \in \Lambda))$ is a tree with a root x_0 , $W^T = \{x_0, \ldots, x_k\}$ and $m : T \to M$ and $n : T \to N$ are monotone mappings (i.e. $x_i R^T_{\lambda} x_j$ implies $m(x_i) R^M_{\lambda} m(x_j)$), sending x_0 respectively to x_0^M and x_0^N ;

(過) (ヨ) (ヨ)

• a position is favorable to \exists if for any $\alpha \in \Lambda^*, 1 \le i, j \le k$ $m(x_i)(R^M)^{\alpha}m(x_j) \Longrightarrow n(x_i)(R^N)^{\alpha}n(x_j),$

if x_i was played before first model alternation.

• the game may be either finite or infinite.

(過) (ヨ) (ヨ)

э.

- Initial position: *T* has a single point x_0 , *m* and *n* send it to x_0^M and x_0^N .
- Round 0. ∀ constructs T₀ = ({x₀,..., x_l}, (R_λ : λ ∈ Λ)) and a monotone n₀ : T₀ → N. Then ∃ must answer with a monotone m₀ : T₀ → M.
- Round *i*. \forall adds to T_{i-1} a new leaf, and obtains T_i . Then he chooses either *M* or *N* and extends respectively m_{i-1} or n_{i-1} to T_i , obtaining m_i or n_i . After this, \exists must extend the rest mapping, and a new position (T_i, m_i, n_i) is obtained.
- The game is won by ∃ if for any position (*T_i*, *m_i*, *n_i*) α ∈ Λ*, 0 ≤ *i* ≤ *I*, 0 ≤ *j* ≤ *k*

$$m(x_i)(\mathbb{R}^M)^{\alpha}m(x_j) \Longrightarrow n(x_i)(\mathbb{R}^N)^{\alpha}n(x_j).$$

ヨト くヨトー

Round 0

E 900

ヨト くヨトー

Round 1 (V)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Round 1 (\exists)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Round 2 (V)

ヨ▶ ▲ヨ▶ ヨ のへで

< • • • • •

ヨン くヨン

Theorem

 \forall has a winning strategy in a finite version of such a game iff M_{\circ} is distinguishable from N_{\circ} by a Kracht formula

Definition

If \exists has a winning strategy in an infinite game, we say that M_{\circ} is Kracht-reducible to N_{\circ} , in symbols:

$$M_{\circ} \gg N_{\circ}$$
.

Remark

Winning strategy in an infinite game is a kind of (bi)simulation.

・ 回 ト ・ ヨ ト ・ ヨ ト

Kracht-reducibility in terms of simulations

Consider two $\mathcal{L}f_{\Lambda}$ -structures $M = (W^M, (R^M_{\lambda} : \lambda \in \Lambda))$ and $N = (W^N, (R^N_{\lambda} : \lambda \in \Lambda))$, a tree $T = (W^T, (R^T_{\lambda} : \lambda \in \Lambda))$, monotonic mappings $m : T \to M$ and $n : T \to N$.

Definition

A relation $Z \subseteq W^M \times W^N$ is called a Kracht-simulation if Z satisfies the following conditions:

(KB1) For every $t \in W^T$, $(m(t), n(t)) \in Z$;

(KB2) For any $x^M \in W^M$, $x^N \in W^N$, $t \in T$, for arbitrary sequence $\alpha \in \Lambda^*$ if $(x^M, x^N) \in Z$ and $m(t)(R^M)^{\alpha}x^M$, then $n(t)(R^N)^{\alpha}x^N$.

・ロト ・四ト ・ヨト ・ヨト

(KB3) For any points $x^M \in W^M$ and $x^N \in W^N$ such that $(x^M, x^N) \in Z$ if there exists a point $(x')^M \in R^M_\lambda(x^M)$, then there exists a point $(x')^N \in R^N_\lambda(x^N)$ such that $(x'^M, x'^N) \in Z$.

(KB4) For any points $x^M \in W^M$ and $x^N \in W^N$ such that $(x^M, x^N) \in Z$, if there exists a point $(x')^N \in R^N_\lambda(x^N)$, then there exists a point $(x')^M \in R^M_\lambda(x^M)$, such that $(x'^M, x'^N) \in Z$.

In this case we say that the triple (M, T, m) is Kracht-reducible to (N, T, n) by Z, in symbols: $(M, T, m) \gg_Z (N, T, n)$.

< 回 > < 回 > < 回 > .

Kracht-reducibility in terms of simulations

Figure: Some examples of Kracht-simulations.

э

Kracht-reducibility in terms of simulations

Figure: The left picture is not a Kracht-simulation while the right picture is.

э

Definition

 M_{\circ} is Kracht-reducible to N_{\circ} (notation: $M_{\circ} \gg N_{\circ}$) if for any tree $T = (W^T, (R_{\lambda}^T : \lambda \in \Lambda), x_0)$ for all monotonic mappings $n : T \to N$, sending x_0 to x_0^N , there exists a monotonic mapping $m : T \to M$, sending x_0 to x_0^M , and a relation $Z \subseteq W^M \times W^N$ such that $(M, T, m) \gg_Z (N, T, n)$.

Definition

 $A(x_0) \in \mathcal{L}f_{\Lambda}$ is preserved under Kracht-reducibility if $(M, x_0^M) \gg (N, x_0^N)$ and $M \models A(x_0^M)$ implies $N \models A(x_0^N)$.

Theorem

 $A(x_0) \in \mathcal{L}f_{\Lambda}$ is equivalent to a Kracht formula iff it is preserved under Kracht-reducibility.

・ロット (雪) () () () ()

A trivial example

ъ

A trivial example

"Cubic" formula

All 3-modal frames of the form $F_1 \times F_2 \times F_3$, satisfy

 $\begin{aligned} & f_{C}(x_{0}) = \forall x_{1} \forall x_{3} (x_{0}R_{1}x_{1} \land x_{0}R_{2}x_{2} \land x_{0}R_{3}x_{3} \rightarrow \\ \exists y_{12} \exists y_{13} \exists y_{23} \exists y_{123} (x_{1}R_{2}y_{12} \land x_{1}R_{3}y_{13} \land x_{2}R_{1}y_{12} \land x_{2}R_{3}y_{23} \land \\ & x_{3}R_{1}y_{13} \land x_{3}R_{2}y_{23} \land y_{23}R_{1}y_{123} \land y_{13}R_{2}y_{123} \land y_{12}R_{3}y_{123})) \end{aligned}$

This property is locally first-order definable by a generalized Sahlqvist formula

 $\begin{aligned} cub_1 &= \left[\Diamond_1 (\Box_2 p_{12} \land \Box_3 p_{13}) \land \Diamond_2 (\Box_1 p_{21} \land \Box_3 p_{23}) \land \Diamond_3 (\Box_1 p_{31} \land \Box_2 p_{32}) \land \\ \Box_1 \Box_2 (p_{12} \land p_{21} \rightarrow \Box_3 q_3) \land \Box_1 \Box_3 (p_{13} \land p_{31} \rightarrow \Box_2 q_2) \land \Box_2 \Box_3 (p_{23} \land p_{32} \rightarrow \Box_1 q_1) \right] \\ &\rightarrow \Diamond_1 \Diamond_2 \Diamond_3 (q_1 \land q_2 \land q_3). \end{aligned}$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ ∽ � � �

This property is not equivalent to any Kracht formula.

N

(四) < 三) < 三) < 三) 三

This characterization can be easily extended to generalized Kracht formulas.

(KB2') For any $x^M \in W^M$, $x^N \in W^N$, $t_1, \ldots, t_l \in T$, for all safe expressions $S(t_1, \ldots, t_l)$ if $(x^M, x^N) \in Z$ and $x^M \in S(m(t_1), \ldots, m(t_l))$, then $x^N \in x^M \in S(m(t_1), \ldots, m(t_l))$.

Question

Does modal definability of a first-order formula, and *a*-persinstance of its modal counterpart imply its equivalence to a Kracht formula?

Question

Take a class of first-order formulas *C*. It defines some truth-preserving relation between models: put $M \gg N$ if for all $\phi \in C$ if $M \models \phi$ then $N \models \phi$. When we can claim that any first-order formula ψ is equivalent

to a formula from C iff ψ is preserved under \gg ?

・ 同 ト ・ ヨ ト ・ ヨ ト ・