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Abstract. Assertions, denials, proofs, disproofs, and their duals are
discussed. Bi-intuitionistic logic, also known as Heyting-Brouwer
logic, is extended in various ways by a strong negation connective
that is used to express commitments arising from denials. These
logics have been introduced and investigated in (Wansing 2008).
In the present paper, a proof-theoretic semantics in terms of
proofs, disproofs, and their duals is developed.

Denial is not to be analysed as the assertion of a negation.
Greg Restall (2004)

I have a modest proposal: negation is denial in the object language.
Bryson Brown (2002)
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inferential status related speech act

∅ ` A A is provable to assert that A
direct verification

∅ ` ∼A A is disprovable to deny that A
direct falsification

A ` ∅ A is reducible to non-truth to assert that no information
indirect falsification supports the truth of A

∼A ` ∅ A is reducible to non-falsity to assert that no information
indirect verification supports the falsity of A

Table: Speech acts and the inferential status of propositions.
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inferential relation
A1, . . . ,An ` A A is provable from assumptions A1, . . . ,An

A1, . . . ,An ` ∼A A is disprovable from assumptions A1, . . . ,An

A ` A1, . . . ,An A is reducible to absurdity from
counterassumptions A1, . . . ,An

∼A ` A1, . . . ,An A is reducible to non-falsity from
counterassumptions A1, . . . ,An

∼A1, . . . ,∼An ` A A is provable from rejections A1, . . . ,An

∼A1, . . . ,∼An ` ∼A A is disprovable from rejections A1, . . . ,An

A ` ∼A1, . . . ,∼An A is red. to absurdity from counterrejections
A1, . . . ,An

∼A ` ∼A1, . . . ,∼An A is red. to non-falsity from counterrejections
A1, . . . ,An

Table: Inferential relations.
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inferential relation inferential status
A1, . . . ,An ` A ∅ ` (A1 ∧ . . . ∧ An) → A

A1, . . . ,An ` ∼A ∅ ` (A1 ∧ . . . ∧ An) → ∼A
A ` A1, . . . ,An A−� (A1 ∨ . . . ∨ An) ` ∅

∼A ` A1, . . . ,An ∼A−� (A1 ∨ . . . ∨ An) ` ∅
∼A1, . . . ,∼An ` A ∅ ` (∼A1 ∧ . . . ∧ ∼An) → A

∼A1, . . . ,∼An ` ∼A ∅ ` (∼A1 ∧ . . . ∧ ∼An) → ∼A
A ` ∼A1, . . . ,∼An A−� (∼A1 ∨ . . . ∨ ∼An) ` ∅

∼A ` ∼A1, . . . ,∼An ∼A−� (∼A1 ∨ . . . ∨ ∼An) ` ∅

Table: From inferential relations to inferential status.
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A formula C−� B is to be read as “B co-implies C” or
“C excludes B”.

In classical logic, C−� B is definable as C ∧ ¬B.

Whereas implication is the residuum of conjunction, co-implication
is the residuum of disjunction:

(A ∧ B) ` C iff A ` (B → C ) iff B ` (A → C ),

C ` (A ∨ B) iff (C−� A) ` B iff (C−� B) ` A.
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We arrive at the following vocabulary: {∧,∨,→,−� ,∼}.

Whereas ∧,∨,→, and −� may be seen to emerge from the
reduction of inferential relations to inferential status, ∼ reflects the
distinction between provability and disprovability.

Conjunction ∧ combines formulas on the left of `, and disjunction
combines formulas on the right of `. Implication is a vehicle for
registering formulas that appear in antecedent position in
succedent position, and co-implication is a vehicle for registering
formulas that appear in succedent position in antecedent position.
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The strong negation ∼ is a primitive negation. Other kinds of
negation connectives are definable in the presence of → and −� .

Let p be a certain propositional letter. Then we define non-falsity
as follows: > := (p → p), and non-truth in this way:
⊥ := (p−� p). We can then introduce two negation connectives:

−A := (>−� A) (co-negation), and

¬A := (A → ⊥) (intuitionistic negation).
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Other defined connectives of HB are equivalence, ↔, and
co-equivalence, �−� , which are defined as follows:

A ≡ B := (A → B) ∧ (B → A);

A�−� B := (A−� B) ∨ (B−� A).

The connectives ∧,∨,→, and −� are the primitive connectives of
bi-intuitionistic logic BiInt, alias Heyting-Brouwer logic HB.
Extensions of HB by ∼ have been introduced and investigated in
(Wansing 2008).
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The propositional language L′ of HB is defined in Backus–Naur
form as follows:

atomic formulas: p ∈ Atom
formulas: A ∈ Form(Atom)

A ::= p | (A ∧ A) | (A ∨ A) | (A → A) | (A−� A).
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It is well-known that intuitionistic propositional logic is faithfully
embeddable into the modal logic S4 (= KT4), the logic of
necessity and possibility on reflexive and transitive frames. The
relational frame semantics of HB is simple and transparent. It
reveals that HB can be faithfully embedded into temporal S4 (=
KtT4).

Definition

A frame is a pre-order 〈I ,≤〉. Intuitively, I is a non-empty set of
information states, and ≤ is a reflexive transitive binary relation of
possible expansion of states on I .

Instead of w ≤ w ′, we also write w ′ ≥ w .
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Definition

An HB-model is a structure 〈I ,≤, v+〉, where 〈I ,≤〉 is a frame and
v+ is a function that maps every p ∈ Atom to a subset of I . It is
assumed that v+ satisfies the following persistence (or heredity)
condition for atoms:
if w ≤ w ′, then w ∈ v+(p) implies w ′ ∈ v+(p).

The relation M,w |=+ A (‘state w supports the truth of L′-formula A in
model M’) is inductively defined as follows:

M,w |=+ p iff w ∈ v+(p)
M,w |=+ (A ∧ B) iff M,w |=+ A and M,w |=+ B
M,w |=+ (A ∨ B) iff M,w |=+ A or M,w |=+ B
M,w |=+ (A → B) iff for every w ′ ≥ w : M,w ′ 6|=+ A or M,w ′ |=+ B
M,w |=+ (A−� B) iff there exists w ′ ≤ w : M,w ′ |=+ A and

M,w ′ 6|=+ B
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M,w |=+ ¬A iff for every w ′ ≥ w , M,w ′ 6|=+ A;

M,w |=+ −A iff there exists w ′ ≤ w and M,w ′ 6|=+ A.

Observation (Persistence)

For every L′-formula A, HB-model 〈I ,≤, v+〉, and w, w ′ ∈ I :

if w ≤ w ′, then M,w |=+ A implies M,w ′ |=+ A.

Definition

HB is the set of all L′-formulas A such that for every HB-model
〈I ,≤, v+〉, and w ∈ I : M,w |=+ A.
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Definition

A model is a structure 〈I ,≤, v+, v−〉, where 〈I ,≤〉 is a frame.
Moreover, v+ and v− are functions that map every p ∈ Atom to a
subset of I (namely the states that support the truth of p and the
falsity of p, respectively. The functions v+ and v− satisfy the
following persistence conditions for atoms:
if w ≤ w ′, then w ∈ v+(p) implies w ′ ∈ v+(p);
if w ≤ w ′, then w ∈ v−(p) implies w ′ ∈ v−(p).
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Definition (continued)

The relations M,w |=+ A (‘state w supports the truth of L-formula A in
model M’) and M,w |=− A (‘state w supports the falsity of L-formula
A in model M’) are inductively defined as follows:

M,w |=+ p iff w ∈ v+(p)
M,w |=− p iff w ∈ v−(p)

M,w |=+ ∼A iff M,w |=− A
M,w |=− ∼A iff M,w |=+ A

M,w |=+ (A ∧ B) iff M,w |=+ A and M,w |=+ B
M,w |=− (A ∧ B) iff M,w |=− A or M,w |=− B

M,w |=+ (A ∨ B) iff M,w |=+ A or M,w |=+ B
M,w |=− (A ∨ B) iff M,w |=− A and M,w |=− B

M,w |=+ (A → B) iff for every w ′ ≥ w : M,w ′ 6|=+ A or M,w ′ |=+ B
M,w |=+ (A−� B) iff there exists w ′ ≤ w : M,w ′ |=+ A and

M,w ′ 6|=+ B.
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In the following table, a number of support of falsity conditions for
implications and co-implications are listed. For each choice of pairs
of conditions, support of falsity is persistent for arbitrary formulas.

cI1 M, w |=− (A → B) iff M, w |=+ A and M, w |=− B
cI2 M, w |=− (A → B) iff for every w ′ ≥ w : M, w ′ 6|=+ A or M, w ′ |=− B
cI3 M, w |=− (A → B) iff there is w ′ ≤ w : M, w ′ |=+ A and M, w ′ 6|=+ B
cI4 M, w |=− (A → B) iff there is w ′ ≤ w : M, w ′ 6|=− A and M, w ′ |=− B

cC1 M, w |=− (A−� B) iff M, w |=− A or M, w |=+ B
cC2 M, w |=− (A−� B) iff there is w ′ ≤ w : M, w ′ |=− A and M, w ′ 6|=+ B
cC3 M, w |=− (A−� B) iff for every w ′ ≥ w : M, w ′ 6|=+ A or M, w ′ |=+ B
cC4 M, w |=− (A−� B) iff for every w ′ ≥ w : M, w ′ |=− A or M, w ′ 6|=− B

Table: Support of falsity conditions for implications and co-implications
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Observation (Persistence)

For every L-formula A, model 〈I ,≤, v+, v−〉, and w, w ′ ∈ I :
if w ≤ w ′, then w |=+ A implies w ′ |=+ A;
if w ≤ w ′, then w |=− A implies w ′ |=− A.

The different support of falsity conditions for implications and
co-implications result in sixteen extensions of HB. Valid
equivalences characteristic of these logics are stated in the next
Table. The logics in the language L that differ from each other
only with respect to validating a certain pair of these equivalences
(one from the I -equivalences and one from the C -equivalences) are
referred to as systems (Ii ,Cj), i , j ∈ {1, 2, 3, 4}.
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I1 ∼(A → B) ↔ (A ∧ ∼B) neg. implication, classical reading
I2 ∼(A → B) ↔ (A → ∼B) neg. implication, connexive reading
I3 ∼(A → B) ↔ (A−� B) neg. implication as co-implication
I4 ∼(A → B) ↔ (∼B−�∼A) neg. implication as contraposed co-impl.

C1 ∼(A−� B) ↔ (∼A ∨ B) neg. co-implication, classical reading
C2 ∼(A−� B) ↔ (∼A−� B) neg. co-implication, connexive reading
C3 ∼(A−� B) ↔ (A → B) neg. co-implication as implication
C4 ∼(A−� B) ↔ (∼B → ∼A) neg. co-implication as contraposed impl.

Table: Constructively negated implications and co-implications
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Definition

The logics (Ii ,Cj) are defined as the triples (L, |=+
Ii ,Cj

, |=−
Ii ,Cj

),

where the entailment relations |=+
Ii ,Cj

, |=−
Ii ,Cj

⊆ P(L)× P(L) are

defined as follows:
∆ |=+

Ii ,Cj
Γ iff for every model M = 〈I ,≤, v+, v−〉 defined with

clauses cIi and cCj and every w ∈ I , if M,w |=+ A for every
A ∈ ∆, then M,w |=+ B for some B ∈ Γ, and
∆ |= −Ii ,Cj

Γ iff for every model M = 〈I ,≤, v+, v−〉 defined with
clauses cIi and cCj and every w ∈ I , if M,w |=− A for every
A ∈ Γ, then M,w |=− B for some B ∈ ∆.
For singleton sets {A} and {B}, we write A |=+

Ii ,Cj
B (A |=−

Ii ,Cj
B)

instead of {A} |=+
Ii ,Cj

{B} ({A} |=−
Ii ,Cj

{B}). If the context is clear,

we shall sometimes omit the subscript Ii ,Cj
.
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Observation

If (Ii ,Cj) 6= (I4,C4), then |=+
Ii ,Cj

6= |=−
Ii ,Cj

.

We do not require that for atomic formulas p, v+(p)∩ v−(p) = ∅.
Therefore, the logics under consideration are paraconsistent.
Neither is it the case that for any formula B, {p,∼p} |=+

Ii ,Cj
B nor

is it the case that B |=−
Ii ,Cj

{p,∼p}. (Co-negation is, of course,

also a paraconsistent negation, whereas intuitionistic negation is
‘paracomplete’.)
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A formula is in negation normal form if it contains ∼ only in front
of atoms. The following translations ρIi ,Cj

send every formula A to
a formula in negation normal form, where p ∈ Atom and
� ∈ {∨,∧,→,−� }:

ρIi ,Cj (p) = p
ρIi ,Cj (∼p) = ∼p
ρIi ,Cj (∼∼ A) = ρIi ,Cj (A)
ρIi ,Cj (A� B) = ρIi ,Cj (A)� ρIi ,Cj (B)
ρIi ,Cj (∼(A ∨ B)) = ρIi ,Cj (∼A) ∧ ρIi ,Cj (∼B)
ρIi ,Cj (∼(A ∧ B)) = ρIi ,Cj (∼A) ∨ ρIi ,Cj (∼B)
ρI1,Cj (∼(A → B)) = ρI1,Cj (A) ∧ ρI1,Cj (∼B)
ρI2,Cj (∼(A → B)) = ρI2,Cj (A) → ρI2,Cj (∼B)
ρI3,Cj (∼(A → B)) = ρI3,Cj (A)−� ρI3,Cj (B)
ρI4,Cj (∼(A → B)) = ρI4,Cj (∼B)−� ρI4,Cj (∼A)
ρIi ,C1(∼(A−� B)) = ρIi ,C1(∼A) ∨ ρIi ,C1(B)
ρIi ,C2(∼(A−� B)) = ρIi ,C2(∼A)−� ρIi ,C2(B)
ρIi ,C3(∼(A−� B)) = ρIi ,C3(A) → ρIi ,C3(B)
ρIi ,C4(∼(A−� B)) = ρIi ,C4(∼B) → ρIi ,C4(∼A)
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Lemma

For every formula A, ρIi ,Cj
(A) is in negation normal form and A

|=+
Ii ,Cj

ρIi ,Cj
(A), ρIi ,Cj

(A) |=+
Ii ,Cj

A, A |=−
Ii ,Cj

ρIi ,Cj
(A), ρIi ,Cj

(A)

|=−
Ii ,Cj

A.
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We supplement the BHK interpretation by interpretations in terms
of canonical disproofs, canonical reductions to absurdity (alias
non-truth), and canonical reductions to non-falsity. That is, we
define the notions of canonical proofs, disproofs, dual proofs and
dual disproofs of complex L-formulas by simultaneous induction.

We will make the following assumptions:

for no L-formula A there exists both a proof and a dual proof
of A;

for no L-formula A there exists both a disproof and a dual
disproof of A;

every L-formula A either has a proof or dual proof;

every L-formula A either has a disproof or dual disproof.
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A canonical proof of a strongly negated formula ∼A is a
canonical disproof of A.

A canonical proof of a conjunction (A ∧ B) is a pair (π1, π2)
consisting of a canonical proof π1 of A and a canonical proof
π2 of B.

A canonical proof of a disjunction (A ∨ B) is a pair (i , π) such
that i = 0 and π is a canonical proof of A or i = 1 and π is a
canonical proof of B.

A canonical proof of an implication (A → B) is a construction
that transforms any canonical proof of A into a canonical
proof of B.

A canonical proof of a co-implication (A−� B) is a pair
(π1, π2), where π1 is a canonical proof of A and π2 is a
canonical dual proof of B. (This pair is a canonical dual proof
of (A → B).)
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A canonical disproof of a strongly negated formula ∼A is a
canonical proof of A.

A canonical disproof of a conjunction (A ∧ B) is a pair (i , π)
such that i = 0 and π is a canonical disproof of A or i = 1
and π is a canonical disproof of B.

A canonical disproof of a disjunction (A ∨ B) is a pair (π1, π2)
consisting of a canonical disproof π1 of A and a canonical
disproof π2 of B.
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A canonical disproof of an implication (A → B) in

(I1Cj) is a pair (π1, π2) consisting of a canonical proof π1 of A and a
canonical disproof π2 of B.

(I2Cj) is a construction that transforms any canonical proof of A into
a canonical disproof of B.

(I3Cj) is a pair (π1, π2), where π1 is a canonical proof of A and π2 is
a canonical dual proof of B. (This pair is a canonical dual
proof of (A → B).)

(I4Cj) is a pair (π1, π2), where π1 is a canonical disproof of B and π2

is a canonical dual disproof of A.
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A canonical disproof of a co-implication (A−� B) in

(IiC1) is a pair (i , π) such that i = 0 and π is a canonical disproof of
A or i = 1 and π is a canonical proof of B.

(IiC2) is a pair (π1, π2), where π1 is a canonical disproof of A and π2

is a canonical dual proof of B. (This pair is a canonical dual
proof of (A → ∼B).)

(IiC3) is a construction that transforms any canonical proof of A into
a canonical proof of B.

(IiC4) is a construction that transforms any canonical disproof of B
into a canonical disproof of A.
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A canonical reduction to non-truth (canonical dual proof) of a
strongly negated formula ∼A is canonical dual disproof of A.

A canonical reduction to non-truth of a conjunction (A∧B) is
a pair (i , π) such that i = 0 and π is a canonical dual proof of
A or i = 1 and π is a canonical dual proof of B.

A canonical reduction to non-truth of a disjunction (A ∨ B) is
a pair (π1, π2) consisting of a dual proof π1 of A and a dual
proof π2 of B.

A canonical reduction to non-truth of an implication (A → B)
is a pair (π1, π2), where π1 is a canonical proof of A and π2 is
a canonical dual proof of B. (This pair is a canonical proof of
(A−� B).)

A canonical reduction to non-truth of a co-implication
(A−� B) is a construction that transforms any dual proof of B
into a dual proof of A.
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A canonical reduction to non-falsity (canonical dual disproof)
of a strongly negated formula ∼A is a canonical dual proof of
A.

A canonical reduction to non-falsity of a conjunction (A ∧ B)
is a pair (π1, π2) consisting of a dual disproof π1 of A and a
dual disproof π2 of B.

A canonical reduction to non-falsity of a disjunction (A∨B) is
a pair (i , π) such that i = 0 and π is a canonical dual disproof
of A or i = 1 and π is a canonical dual disproof of B.
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A canonical reduction to non-falsity of an implication
(A → B) in

(I1Cj) is a pair (i , π) such that i = 0 and π is a canonical dual proof
of A or i = 1 and π is a canonical dual disproof of B.

(I2Cj) is a pair (π1, π2), where π1 is a canonical proof of A and π2 is
a canonical dual disproof of B.

(I3Cj) is a pair (π1, π2), where π1 is a canonical proof of A and π2 is
a canonical dual proof of B. (This pair is a canonical dual
proof of (A → B).)

(I4Cj) is a pair (π1, π2), where π1 is a canonical disproof of B and π2

is a canonical dual disproof of A. (This pair is a canonical dual
proof of (∼B → ∼A).)
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A canonical reduction to non-falsity of a co-implication
(A−� B) in

(IiC1) is a pair (π1, π2), where π1 is a caninical dual disproof of A
and π2 is a canonical dual proof of B.

(IiC2) is a construction that transforms any canonical dual proof of B
into a canonical dual disproof of A. (This construction is a
canonical dual proof (∼ A−� B).)

(IiC3) is a pair (π1, π2), where π1 is a canonical proof of A and π2 is
a canonical dual proof of B. (Thi spair is a canconcal dual
proof of (A → B).)

(IiC4) is a pair (π1, π2), where π1 is a canonical disproof of B and π2

is a canonical dual disproof of A.
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To show by induction on the construction of inferences that the
logics (Ii ,Cj) are sound with respect to the above BHK-style
interpretation in terms of proof, disproof, and their duals, we need
proof systems for the semantically defined logics (Ii ,Cj).

For example, we want to show that if ∼ A is provable, then there
is a construction which is a disproof of A.

We consider the the display calculi defined in (Wansing 2008).
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The set of structures (or Gentzen terms) is defined as follows:

formulas: A ∈ Form(Atom)
structures X ∈ Struc(Form)

X ::= A | I | (X ◦ X ) | (X • X ).

The intended interpretation of the connective ◦ as conjunction in
antecedent position and as implication in succedent position and of
• as co-implication in antecedent position and as disjunction in
succedent position justifies certain ‘display postulates’ (dp):

Y ` X ◦ Z
X ◦ Y ` Z
X ` Y ◦ Z

X ` Y ◦ Z
X ◦ Y ` Z
Y ` X ◦ Z

X • Z ` Y
X ` Y • Z
X • Y ` Z

X • Y ` Z
X ` Y • Z
X • Z ` Y
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Moreover, the interpretation of I as the empty structure suggests
the following structural inference rules:

X ◦ I ` Y
X ` Y

I ◦ X ` Y

I ◦ X ` Y
X ` Y

X ◦ I ` Y

X ` Y • I
X ` Y

X ` I • Y

X ` I • Y
X ` Y

X ` Y • I
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In addition there are various ‘logical’ structural rules:

p ` p
(id)

∼p ` ∼p
(id∼)

X ` A A ` Y
X ` Y

(cut)

and versions of the familiar structural rules from standard Gentzen
systems for classical logic, monotonicity, exchange, and
contraction, plus associativity:
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X ` Y
X ` Y • Z

(rm)
X ` Y

X ◦ Z ` Y
(lm)

X ` Y • Z
X ` Z • Y

(re)
X ◦ Z ` Y
Z ◦ X ` Y

(le)

X ` Y • Y
X ` Y

(rc)
X ◦ X ` Y

X ` Y
(lc)

X ` (Y • Z) • X ′

X ` Y • (Z • X ′)
(ra)

(X ◦ Y ) ◦ Z ` X ′

X ◦ (Y ◦ Z) ` X ′ (la)

Table: Structural sequent rules
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X ` A Y ` B

X ◦ Y ` (A ∧ B)
(` ∧)

A ◦ B ` X

(A ∧ B) ` X
(∧ `)

X ` A • B

X ` (A ∨ B)
(` ∨)

A ` X B ` Y

(A ∨ B) ` X • Y
(∨ `)

X ` A ◦ B

X ` (A → B)
(` →)

X ` A B ` Y

(A → B) ` X ◦ Y
(→ `)

X ` B A ` Y

X • Y ` B−� A
(` −� )

B • A ` X

B−� A ` X
(−� `)

X ` ∼A • ∼B

X ` ∼(A ∧ B)
(` ∼∧)

∼A ` X ∼B ` Y

∼(A ∧ B) ` X • Y
(∼∧ `)

X ` ∼A Y ` ∼B

X ◦ Y ` ∼(A ∨ B)
(` ∼∨)

∼A ◦ ∼B ` X

∼(A ∨ B) ` X
(∼∨ `)

X ` A

X ` ∼∼A
(` ∼∼)

A ` X

∼∼A ` X
(∼∼ `)

Table: Introduction rules shared by all logics (Ii ,Cj)
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rI1

X ` A Y ` ∼B

X ◦ Y ` ∼(A → B)

A ◦ ∼B ` X

∼(A → B) ` X

rI2

X ` A ◦ ∼B

X ` ∼(A → B)

X ` A ∼B ` Y

∼(A → B) ` X ◦ Y

rI3

X ` A B ` Y

X • Y ` ∼(A → B)

A • B ` X

∼(A → B) ` X

rI4

X ` ∼B ∼A ` Y

X • Y ` ∼(A → B)

∼B • ∼A ` X

∼(A → B) ` X

rC1

X ` ∼A • B

X ` ∼(A−� B)

∼A ` X B ` Y

∼(A−� B) ` X • Y

rC2

X ` ∼A B ` Y

X • Y ` ∼(A−� B)

∼A • B ` X

∼(A−� B) ` X

rC3

X ` A ◦ B

X ` ∼(A−� B)

Y ` A B ` X

∼(A−� B) ` Y ◦ X

rC4

X ` ∼B ◦ ∼A

X ` ∼(A−� B)

Y ` ∼B ∼A ` X

∼(A−� B) ` Y ◦ X

Table: Sequent rules for negated implications and co-implications
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The display sequent calculi δ(Ii ,Cj), i , j ∈ {1, 2, 3, 4}, for the
constructive logics (Ii ,Cj) share the display postualtes, the
structural rules and the introduction rules stated in the
penultimate table. The particular display calculus δ(Ii ,Cj) then is
the proof system obtained by adding the rules rIi and rCj from the
preceding table.

A derivation of a sequent s from a set of sequents {s1, . . . , sn} in
δ(Ii ,Cj) is defined as a tree with root s such that every leaf is an
instantiation of (id), (id∼), or a sequent from {s1, . . . , sn}, and
every other node is obtained by an application of one of the
remaining rules. A proof of a sequent s in δ(Ii ,Cj) is a derivation
of s from ∅. Sequents s and s′ are said to be interderivable iff s is
derivable from {s′} and s′ is derivable from s.
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Two sequents s and s′ are said to be structurally equivalent if they
are interderivable by means of display postulates only. It is
characteristic for display calculi that any substructure of a given
sequent s may be displayed as the entire antecedent or succedent
of a structurally equivalent sequent s′.

If s = X ` Y is a sequent, then the displayed occurrence of X (Y )
is an antecedent (succedent) part of s. If an occurrence of (Z ◦W )
is an antecedent part of s, then the displayed occurrences of Z and
W are antecedent parts of s. If an occurrence of (Z •W ) is an
antecedent part of s, then the displayed occurrence of Z (W ) is an
antecedent (succedent) part of s. If an occurrence of (Z ◦W ) is a
succedent part of s, then the displayed occurrence of Z (W ) is an
antecedent (succedent) part of s. If an occurrence of (Z •W ) is a
succedent part of s, then the displayed occurrences of Z and W
are succedent parts of s.
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Theorem

For every sequent s and every antecedent (succedent) part X of s,
there exists a sequent s′ structurally equivalent to s such that X is
the entire antecedent (succedent) of s′.

Observation

For every L-formula A and every calculus δ(Ii ,Cj), A ` A is
provable.
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One can define translations τ1 and τ2 from structures into formulas
such that these translations reflect the intuitive, context-sensitive
interpretation of the structural connectives: τ1 translates structures
which are antecedent parts of a sequent, whereas τ2 translates
structures which are succedent parts of a sequent.

Definition

The translations τ1 and τ2 from structures into formulas are
inductively defined as follows, where A is a formula and p is a
certain atom:

τ1(A) = A τ2(A) = A
τ1(I) = p → p τ2(I) = p−� p

τ1(X ◦ Y ) = τ1(X ) ∧ τ1(Y ) τ2(X ◦ Y ) = τ1(X ) → τ2(Y )
τ1(X • Y ) = τ1(X )−� τ2(Y ) τ2(X • Y ) = τ2(X ) ∨ τ2(Y )
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Theorem (Soundness)

(1) If X ` Y is provable in δ(Ii ,Cj), then τ1(X ) |=+
Ii ,Cj

τ2(Y ).

(2) If X ` Y is provable in δ(Ii ,Cj), then ∼τ2(Y ) |=−
Ii ,Cj

∼τ1(X ).

The language L∗ results from L by adding for every atomic
formula p a new atom p∗. If A is an L-formula, (A)∗ is the result
of replacing every strongly negated atom ∼p in A by p∗.

Lemma

For every L-formula A, if ∅ |=+
Ii ,Cj

A, then (ρIi ,Cj
(A))∗ is valid in

HB.
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Lemma

For every ∼-free L-formula A, if A is provable in HB, then I ` A is
provable in δ(Ii ,Cj) without using any sequent rules for strongly
negated formulas.

Lemma

For every L-formula A, A ` ρIi ,Cj
(A) and ρIi ,Cj

(A) ` A are provable
in δ(Ii ,Cj).

Lemma

Every sequent X ` τ1(X ) and τ2(X ) ` X is provable in δ(Ii ,Cj),
for all i , j ∈ {1, 2, 3, 4}.
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Theorem (Completeness)

(1) If ρIi ,Cj
(τ1(X )) |=+

Ii ,Cj
ρIi ,Cj

(τ2(Y )), then X ` Y is provable in

δ(Ii ,Cj). (2) If ρIi ,Cj
(∼τ2(Y )) |=−

Ii ,Cj
ρIi ,Cj

(∼τ1(X )), then X ` Y is

provable in δ(Ii ,Cj).

Let δ(Ii ,Cj)
+ denote the result of dropping all sequent rules

exhibiting ∼ from δ(Ii ,Cj).

Theorem

If X ` Y is provable in system δ(Ii ,Cj), then (ρIi ,Cj
(τ1(X )))∗ `

(ρIi ,Cj
(τ2(Y )))∗ is provable in δ(Ii ,Cj)

+ without any applications
of (cut).
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Theorem

Let i , j ∈ {1, 2, 3, 4}. If X ` Y is provable in δ(Ii ,Cj), then

1. there exists a construction π such that π(π′) is a canonical
proof of τ2(Y ) whenever π′ is a canonical proof of τ1(X ).

2. there exists a construction π such that π(π′) is a canonical dual
proof of τ1(X ) whenever π′ is a canonical dual proof of τ2(Y ).
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Theorem

Let i , j ∈ {1, 2, 3, 4}.
If I ` A is provable in δ(Ii ,Cj), then there exists a
construction π which is a proof of A.

If A ` I is provable in δ(Ii ,Cj), then there exists a
construction π which is a dual proof of A.

If I ` ∼A is provable in δ(Ii ,Cj), then there exists a
construction π which is a disproof of A.

If ∼A ` I is provable in δ(Ii ,Cj), then there exists a
construction π which is a dual disproof of A.

Proof. Any canonical proof of τ1(I) = (p → p) and any canonical dual

proof of τ2(I) = (p−� p) is the identity function. Every disproof of A is a

proof of ∼A and every canonical dual disproof of A is a canonical dual

proof of ∼A. q.e.d.
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(propositional) logic soundness with respect
to an interpretation

intuitionistic logic in terms of proofs

Nelson’s logics in terms of proofs and disproofs

dual intuitionistic logic in terms of dual proofs

bi-intuitionistic logic in terms of proofs and dual proofs

bi-intuitionistic logic extended in terms of proof,
by strong negation disproofs, and their duals

Table: Summary

49 / 49


	Syntax and relational semantics of HB and extensions
	Proof-theoretic interpretation
	Display calculi
	Correctness of (Ii , Cj) wrt the proof-theoretic semantics

